Deformations for Function Fields
نویسندگان
چکیده
منابع مشابه
Shape deformations based on vector fields
This thesis explores applications of vector field processing to shape deformations. We present a novel method to construct divergence-free vector fields which are used to deform shapes by vector field integration (Chapter 2). The resulting deformation is volume-preserving and no self-intersections occur. We add more controllability to this approach by introducing implicit boundaries (Chapter 3)...
متن کاملApproximation Exponents for Function Fields
For diophantine approximation of algebraic real numbers by rationals, Roth’s celebrated theorem settles the issue of the approximation exponent completely in the number field case. But in spite of strong analogies between number fields and function fields, its naive analogue fails in function fields of finite characteristic, and the situation is not even conjecturally understood. In this short ...
متن کاملRiemann Hypothesis for function fields
1 1 Preliminaries 1 1.1 Function fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Primes and Divisors . . . . . . . . . . . . . . . . . . . . 2 1.2.2 The Picard Group . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Notation . . . . ...
متن کاملGauss Problem for Function Fields
According to a celebrated conjecture of Gauß , there are infinitely many real quadratic fields whose ring of integers is principal. We recall this conjecture in the framework of global fields. If one removes any assumption on the degree, this leads to various related problems for which we give solutions; namely we prove that there are infinite families of principal rings of algebraic functions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 1998
ISSN: 0022-314X
DOI: 10.1006/jnth.1998.2224